Modelling Viking Era Water Ice Clouds

Leslie K. Tamppari, JPL/UCLA

R. J. Wilson, GFDL

R. W. Zurek, JPL

D. A. Paige, UCLA Oct. 15, 1999

Outline

- Background
- Goals
- Technique
- Results
- **■** Future Work

Background

- Water ice clouds were present in the Martian atmosphere during the Viking era (Tamppari et al., 1999)
 - ► Identified via T_{11} - T_{20}
 - surface emissivities (Christensen, 1998) must be considered

Detection of clouds in infrared

- Temperature contrast
- Spectral contrasts affected by
 - ➤ water ice clouds
 - ➤ surface spectral emissivities
 - -dust

Spectral ε correction

- Raw IRTM T₁₁-T₂₀ maps produced
- Modelled IRTM T₁₁-T₂₀ maps produced
 - ≻ε correction applied (Christensen, 1998)
 - ➤ surface thermal model (Paige et al., 1994)
- Residual cloud maps produced
 - $\Delta_{w} = (T_{11} T_{20})_{raw} (T_{11} T_{20})_{modelled}$

Year One: Ls =[20,35]

Goals

- Determine opacity and temperature of Viking era water ice clouds (Tamppari et al., 1999)
- Determine altitude of clouds
 - ➤ use simulated temperature profiles
- Determine water content of clouds
 - correlate with water vapor
 - ➤ overall water behavior

Technique

- Utilize GFDL MGCM
- Create column output for realistic Martian atmosphere
 - ➤ produces reasonable column integrated water vapor amount, T profile, dust profile
- Radiative transfer
 - \succ incorporates surface ε_{λ}
 - ➤ uses MGCM column atmosphere calculations
 - \succ calculate synthetic T_{λ}
 - \succ compare to IRTM measured T_{λ}

Previous work

- 1D, 2-layer dust, ice cloud model
 - > underconstrained
 - sensitive to τ_i , T_i , τ_d , T_d , T_s , r_mice
- MGCM provides constraint on τ_i , T_i , τ_d , T_d

Water ice cloud temperature and opacity modelling

- 2-layer model
 - > water ice cloud over dust cloud
- Fixed
 - ➤ Surface emissivities (Christensen, 1998)
 - ➤ Emission angle (data)
 - ➤ T_s (thermal model; Paige et al., 1994)
- Variables
 - $ightharpoonup T_d$, τ_d , T_i , τ_i ranges
 - $r_{\rm m}^{\rm ice}$ (4 sizes used)
 - $ightharpoonup r_m^{\text{dust}}$ (Clancy et al., 1995; Toon et al., 1977)

Modelling results

- Must model dust
 - ➤ cannot get good fits without it
- Sensitivities
 - T_s
 - often have to change from original surface thermal model derived
 - change of 1 K can mean $|T_{\lambda}^{\text{meas}} T_{\lambda}^{\text{mod}}| > 1 \text{ K}$
 - $ightharpoonup r_m^{\ \ ice}$; very sensitive, but possibly still bounded
 - $ightharpoonup r_{m}^{dust}$; not sensitive

Approach

- Case study: N. Summer (L_s -95-110)
 - ➤ low dust time period
 - ➤ lat=17N, lon=315W
 - > water ice clouds present
 - ➤ no special topography

Results

■ Best fit when

$$\tau_i = 0.1$$

$$T_i = 180 \text{ K}$$

$$h_i = 20 \text{ km}$$

■ senstivity: dust, T_s, r_m^{ice}

Future Work

- Enhance technique to process all Viking IRTM-derived clouds
 - \rightarrow determine τ , T, h
 - systematically
 - self-consistently